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By using a semianalytical dynamical mean-field approximation previously proposed by the author �H.
Hasegawa, Phys. Rev. E 70, 066107 �2004��, we have studied the synchronization of stochastic, small-world
�SW� networks of FitzHugh-Nagumo neurons with diffusive couplings. The difference and similarity between
results for diffusive and sigmoid couplings have been discussed. It has been shown that with introducing the
weak heterogeneity to regular networks, the synchronization may be slightly increased for diffusive couplings,
while it is decreased for sigmoid couplings. This increase in the synchronization for diffusive couplings is
shown to be due to their local, negative feedback contributions, but not due to the short average distance in SW
networks. Synchronization of SW networks depends not only on their structure but also on the type of
couplings.
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I. INTRODUCTION

In recent years, much attention has been paid to complex
networks such as small-world �SW� and scale-free �SF� net-
works �for a review see �1,2��. The SW network, which has
been proposed by Wattz and Strogatz �WS� �3,4�, is charac-
terized by a large clustering coefficient and a small average
distance. The original WS-SW network was created by intro-
ducing finite-degree heterogeneity to the regular network by
random rewirings of links. Newman and Wattz �NW� �5�
have proposed an alternative SW network, randomly adding
shortcut links to the regular networks without rewirings. In
SW networks, the degree distribution P�k� for a node to have
k coupled neighbors has an exponential tail for a large k. In
contrast, the degree distribution in SF networks, which was
first proposed by Barabási and Albert �6�, is given by the
power law as P�k��k−� with the index ��=2–4�. Since
Barabási and Albert �6� have proposed a growing SF network
with preferential attachments of nodes, many models and
mechanisms have been proposed not only for growing but
also for nongrowing SF networks with geographical and
nongeographical structures.

The interplay between structure and dynamics has at-
tracted a great deal of attention to the synchronization in
complex networks. The synchronization in SW networks of
spiking neuron models has been studied �7–15� with the use
of Hodgkin-Huxley �HH� �7,8�, FitzHugh-Nagumo �FN�
�9,10�, Hindmarsh-Rose �HR� �11�, integrate-and-fire �IF�
�8,12�, and phase models �13,14�. By using a more general
class of models, dynamical properties including the syn-
chrony in SW and SF networks have been also investigated
�16–18�. It has been, however, controversial whether the syn-
chronization in complex networks is better or worse than that
in regular networks. Most of calculations have shown that
the synchronization in SW networks is better than regular
networks because of the short average distance in the former
�7,11,13–16�. On the contrary, it has been shown that the

average distance is not necessarily correlated with the syn-
chronizability of the networks �10,17�. Some have claimed
that the synchronization is increased or decreased depending
on the adopted parameters or calculation conditions �8,9,12�.

In a previous paper �10�, we have developed a semiana-
lytical theory for SW networks by generalizing the dynami-
cal mean-field approximation �DMA� which was originally
proposed for regular networks with all-to-all couplings
�19,20�. The method newly developed in �10� is applicable to
SW networks with a wide range of couplings covering from
local to global and/or from regular to random ones. In �10�,
we have taken into account three kinds of spatial correla-
tions: on-site correlation, the correlation for a coupled pair,
and that for a pair without direct couplings. Our method has
been applied to SW FN neural networks with sigmoid cou-
plings �10�, in which a coupling to the neuron i is given by

Ii
�c��t� = J�

j

cijG„xj�t�… , �1�

where J denotes the coupling strength, G�x�=1/
�1+exp�−�x−�� /��� is the sigmoid function with threshold �
and width �, and the adjacent matrix cij is cij =cji=1 for a
coupled �i , j� pair and 0 otherwise. Calculations by the DMA
and direct simulations have shown that when random links
are added to regular networks, the synchronization is de-
creased because of the introduced heterogeneity in SW net-
works �10�.

Besides the sigmoid coupling of Eq. �1�, the diffusive
coupling given by

Ii
�c��t� = K�

j

cijH„xj�t� − xi�t�… �2�

has been widely employed for theoretical studies of neural
networks, where K stands for the coupling strength and
H�x−y� the coupling function. Equations �1� and �2� model
chemical and electrical synapses, respectively. Both chemical
and electrical synapses exist in a neocortex. Chemical syn-
apses use a chemical neurotransmitter that is packaged pr-
esynaptically into the vesicle, released in a quantized*Electronic address: hasegawa@u-gakugei.ac.jp
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amount, and binds to postsynaptic receptors. In contrast,
electrical synapses are simpler in structure and function.
They provide a direct pathway that allows ionic current to
flow from the cytoplasm of one cell to that of another �21�.
Although chemical synapses are by far the most abundant,
electrical synapses also play an important role in neocortex.
The purpose of the present paper is to apply the DMA to SW
neural networks of FN neurons with diffusive couplings and
to compare the results for diffusive couplings to those for
sigmoid couplings in �10�. This is expected to provide some
insight into the unsettled issue of the effect of the heteroge-
neity on the synchronization in SW networks mentioned
above.

The paper is organized as follows. In Sec. II, we have
derived differential equations �DE’s�, applying the DMA to
SW FN networks with diffusive couplings in order to trans-
form the original stochastic DE’s to deterministic DE’s. In
Secs. III A and III B, we have reported numerical calcula-
tions for regular and SW networks, respectively. The final
Sec. IV is devoted to conclusion and discussion.

II. SMALL-WORLD NETWORKS OF FN NEURONS

A. Adopted model and method

We have assumed that N-unit FN neurons are distributed
on a ring with the average coordination number Z and the
coupling randomness p. The dynamics of a single neuron i in
a given SW network is described by the nonlinear DE’s
given by

dx1i�t�
dt

= F�x1i�t�� − cx2i�t� + Ii
�c��t� + Ii

�e��t� + �i�t� , �3�

dx2i�t�
dt

= bx1i�t� − dx2i�t� + e �i = 1 – N� , �4�

with

Ii
�c��t� = K�

j

cijH„x1j�t� − x1i�t�… , �5�

Ii
�e��t� = A��t − tin���tin + tw − t� . �6�

In Eqs. �3�–�6�, F�x�t��=kx�t��x�t�−a��1−x�t��, k=0.5,
a=0.1, b=0.015, d=0.003, and e=0 �19,22,23�: x1i and x2i
denote the fast �voltage� variable and slow �recovery� vari-
able, respectively, H�x� stands for the diffusive-type cou-
pling, and cij the adjacent matrix given by cij =cji=1 for a
coupled �i , j� pair and zero otherwise, self-coupling terms
being excluded �cii=0�. By changing the Z value, our model
given by Eqs. �3�–�6� covers from local couplings �Z�N� to
global couplings �Z=N−1�. We should, however, keep in
mind that the electrical synapses by nature can only be pro-
duced among close neurons. The response of neuron net-
works has been studied for the case of an external, single
spike input given by Ii

�e��t� with magnitude A and spike width
tw applied for tin	 t
 tin+ tw, ��x� being the Heaviside func-
tion. Added white noises �i�t� are given by

	�i�t�
 = 0, �7�

	�i�t�� j�t��
 = �2�ij��t − t�� , �8�

where the average of 	U�z , t�
 for an arbitrary function of
U�z , t� is given by

	U�z,t�
 =� ¯� dzU�z,t�Pr�z� , �9�

Pr�z� denoting a probability distribution function for
2N-dimensional random variables z= ��xi��.

Our WS-SW network has been made after �3�. Starting
from a regular network, Nch couplings among NZ /2 cou-
plings are randomly modified such that cij =1 is changed to
cij =0 or vice versa. The coupling randomness p is given by

p =
2Nch

NZ
, �10�

which is 0 and 1 for completely regular and random cou-
plings, respectively.

In the DMA �19,10�, we will obtain equations of motions
for means, variances, and covariances of state variables.
Variables spatially averaged over the ensemble are defined
by

X�t� =
1

N
�

i

xi,  = 1,2, �11�

and their means by

��t� = 		X�t�

c, �12�

where the brackets 	·
c denote the average over the coupling
configuration. As for variances and covariances of state vari-
ables, we consider three kinds of spatial correlations: �1�
on-site correlation ���, �2� the correlation for a coupled pair
���, and �3� that for a pair without direct couplings ���:

		�xi�x�j

c = ��,�, for i = j ,

�,�, for i � j , cij = 1,

�,�, for i � j , cij = 0,
 �13�

where  ,�=1,2 and

�xi�t� = xi�t� − ��t� . �14�

In Eq. �13�, �,�, �,�, and �,� are defined by

�,��t� =� 1

N
�

i

	�xi�t��x�i�t�
�
c

, �15�

�,��t� =� 1

NZ
�

i
�

j

cij	�xi�t��x�j�t�
�
c

, �16�

�,��t� =� 1

N�N − Z − 1��i
�

j

�1 − �ij − cij�

�	�xi�t��x�j�t�
�
c

. �17�

For a later purpose, we define also the spatially averaged
correlation given by
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�,��t� =� 1

N2�
i

�
j

	�xi�t��x�j�t�
�
c

�18�

=		�X�t��X��t�

c, �19�

where �X�t�=X�t�−��t�. It is noted that �,�, �,� �,�,
and �,� are not independent, obeying the sum rule given by

N�,� = �,� + Z�,� + �N − Z − 1��,�. �20�

In order to derive Eqs. �15�–�20�, we have employed the
decomposition

1 = �ij + �1 − �ij��cij + �1 − cij�� = �ij + cij + �1 − �ij − cij� ,

�21�

with cii=0.
In calculating means, variances, and covariances given by

Eqs. �12� and �15�–�18�, we have assumed that �1� the noise
intensity is weak and �2� the distribution of state variables
takes the Gaussian form. By using the first assumption, we
expand the DE’s given by Eqs. �3�–�6� in a power series of
fluctuations around means. The second assumption may be
justified by some numerical calculations for stochastic FN
�23,24� and HH neuron models �25,26�. It has been shown
that for weak noises, the distribution of a membrane poten-
tial of a single FN or HH neuron nearly follows the Gaussian
distribution, although for strong noises, the distribution de-
viates from the Gaussian, taking a bimodal form.

Before closing Sec. II A, we briefly summarize the intro-
duced variables and their meanings as follows: N, the num-
ber of neurons; Z, the average coordination number; p, the
coupling randomness; K, the coupling strength; cij, the adja-
cent matrix; X, the spatially average of the fast �=1� and
slow �=2� variables; �, a mean value of X; �,�, �,�, and
�,�, the correlations of on-site, a coupled pair, and an un-
coupled pair, respectively.

B. Equations of motions

We will obtain equations of motions for ��t�, �,��t�,
�,��t�, �,��t�, and �,��t�. Readers who are not interested in
mathematical details may skip to Sec. II C, where our theo-
retical results are summarized.

After some manipulations, we get the following DE’s �the
argument t being suppressed; for details; see the Appendix�:

d�1

dt
= f0 + f2�1,1 − c�2 + Iext, �22�

d�2

dt
= b�1 − d�2 + e , �23�

d�1,1

dt
= 2�a�1,1 − c�1,2� + 2KZh1��1,1 − �1,1� + �2, �24�

d�2,2

dt
= 2�b�1,2 − d�2,2� , �25�

d�1,2

dt
= b�1,1 + �a − d��1,2 − c�2,2 + KZh1��1,2 − �1,2� ,

�26�

d�1,1

dt
= 2�a�1,1 − c�1,2� +

�2

N
, �27�

d�2,2

dt
= 2�b�1,2 − d�2,2� , �28�

d�1,2

dt
= b�1,1 + �a − d��1,2 − c�2,2, �29�

d�1,1

dt
= 2�a�1,1 − c�1,2� + 2Kh1��1,1 + �ZC − ZR��1,1

+ �ZR − ZC − 1��1,1� , �30�

d�2,2

dt
= 2�b�1,2 − d�2,2� , �31�

d�1,2

dt
= b�1,1 + �a − d��1,2 − c�2,2 + Kh1��1,2 + �ZC − ZR��1,2

+ �ZR − ZC − 1��1,2� , �32�

d�1,1

dt
= 2�a�1,1 − c�1,2� + � 2KZh1

N − Z − 1
���ZR − ZC − 1�

���1,1 − �1,1�� , �33�

d�2,2

dt
= 2�b�1,2 − d�2,2� , �34�

d�1,2

dt
= b�1,1 + �a − d��1,2 − c�2,2 + � KZh1

N − Z − 1
�

���ZR − ZC − 1���1,2 − �1,2�� , �35�

with

C =� 1

NZ2�
i

�
j

�
k

cijcjkcik�
c

, �36�

R =� 1

NZ2�
i

�
j

�
k

cijcjk�
c

, �37�

where a= f1+3f3� 1,1, f�= �1/ /�!�F��� and h1=H�1��0� with
H�0�=H�2��0�=0.

C. Summary of our method

The clustering coefficient C and the coupling connectivity
R, which are given by Eqs. �36� and �37�, respectively, play
important roles in our DMA theory for SW networks. The
clustering coefficient C introduced in SW networks �3,4� ex-
presses a factor forming a cluster where the three sites i, j,
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and k are mutually coupled. In contrast, the coupling connec-
tivity R expresses a factor for a cluster where the two sites j
and k are coupled to the third site i, but the sites j and k are
not necessarily coupled.1 It is noted in Eqs. �22�–�35� that
there is no explicit dependence on the coupling randomness
p and it is only through parameters C and R in the mean-field
equations.

Figures 1�a� and 1�b� show the p dependences of C and R,
respectively, for various Z values with N=100. With increas-
ing p from zero, C is decreased and approaches C=Z /N at
p=1. In contrast, R is monotonically increased with increas-
ing p.

Among the 12 correlations such as �,�, etc., given by
Eqs. �15�–�18�, nine correlations are independent because of
the sum rule given by Eq. �20�. In this study, we have chosen
nine correlations of �,�, �,�, and �,� as independent vari-
ables. Then the original 2N-dimensional stochastic DE’s
given by Eqs. �3� and �4� have been transformed to 11-
dimensional deterministic DE’s. Equations of motions for
diffusive couplings given by Eqs. �22�–�35� are rather differ-
ent from those for sigmoid couplings given by Eqs.
�21�–�34� in �10�, a related discussion being given in Sec. IV.

From a comparison of Eq. �24� with Eq. �27�, we note that

�1,1 =
�1,1

N
�for K/� → 0� �38�

=�1,1 �for �/K → 0� , �39�

where Eq. �38� is nothing but the central-limit theorem de-
scribing the relation between fluctuations of local and aver-
age variables �Eqs. �15� and �19��. In order to quantitatively
discuss the synchronization, we first consider the quantity
given by

P�t� =
1

N2�
ij

	�x1i�t� − x1j�t��2
 = 2��1,1�t� − �1,1�t�� .

�40�

When all neurons are in the completely synchronous state,
we get x1i�t�=X1�t� for all i and then P�t�=0 in Eq. �40�. On

the contrary, in the asynchronous state, we get P�t�=2�1
−1/N��1,1� P0�t� from Eq. �38�. We have defined the syn-
chronization ratio given by �10�

S�t� = 1 −
P�t�
P0�t�

= �N�1,1�t�/�1,1�t� − 1

N − 1
� , �41�

which is 0 and 1 for completely asynchronous �P= P0� and
synchronous states �P=0�, respectively.

We define the time tmax when S�t� takes its maximum
value as

tmax = �t�dS�t�/dt = 0,tin 	 t 	 tin + tw� . �42�

The maximum value of Smax�=S�tmax�� depends on model pa-
rameters such as the coupling strength �K�, the noise inten-
sity ���, the size of cluster �N�, the coordination number �Z�,
and the coupling randomness �p�, as will be discussed in the
following section.

III. CALCULATED RESULTS

A. Regular couplings

We have adopted same parameters of �=0.5, �=0.5,
�s=10, A=0.10, tin=100, and Tw=10 as in �19� and the H
function given by

H�x1j − x1j� = x1j − x1j . �43�

DMA calculations have been made by solving Eqs. �22�–�35�
with the use of the fourth-order Runge-Kutta method with a
time step of 0.01. We have performed also direct simulations
by using the fourth-order Runge-Kutta method with a time
step of 0.01. The results of direct simulations are averages of
1000 trials for Z	20 and those of 100 trials otherwise no-
ticed. All quantities are dimensionless.

First we discuss the case of regular couplings �p=0.0�.
Figures 2�a�–2�d� show time courses of �1, �1,1, �1,1, and

1What is customarily called the clustering coefficient corresponds
to C /R where C and R are defined by Eqs. �36� and �37�, respec-
tively, in the present paper �1�.

FIG. 1. The coupling randomness �p� dependence of �a� the
clustering coefficient C and �b� the coupling connectivity R of SW
networks for Z=10, 20, and 50 with N=100.

FIG. 2. �Color online� Time courses of �a� �1, �b� �1,1, �c� �1,1,
and �d� �1,1 for �=0.005, K=0.02, N=100, Z=10, and p=0.0, solid
and dashed curves denoting results of DMA and direct simulations,
respectively. At the bottom of �a�, an input signal is plotted. Vertical
scales of �b�, �c�, and �d� are multiplied by factors of 10−4, 10−5, and
10−5, respectively.

HIDEO HASEGAWA PHYSICAL REVIEW E 72, 056139 �2005�

056139-4



�1,1, respectively, with �=0.005, K=0.02, p=0.0, N=100,
and Z=10. Results of the DMA expressed by solid curves are
in good agreement with those of direct simulations depicted
by dashed curves. The time courses of �1, �1,1 �1,1, and �1,1
shown in Figs. 2�a�–2�d� are not so different from those for
sigmoid couplings reported in Figs. 3�a�–3�d� of �10�.

Figures 3�a�–3�c� show time courses of S�t� calculated by
DMA �solid curves� and direct simulations �dashed curves�
for Z=10, 50, and 99, whose magnitudes are increased with
increasing Z. The maximum values of the synchronization
ratio in the DMA are 0.0654, 0.386, and 0.569 for Z=10, 50,
and 99, respectively, which shows a larger synchrony for
larger Z. This is more clearly seen in Fig. 4�a� showing Smax
as a function of Z. Figure 4�b� shows the Z dependences of
�1,1, �1,1, and �1,1 at t= tmax with K=0.02, �=0.005, and
N=100: solid and open marks express results of DMA and
direct simulations, respectively. With increasing Z, �1,1 is
significantly decreased while �1,1 and �1,1 are almost con-
stant. This explains the larger synchrony Sf for larger Z,
shown in Fig. 4�a�. The difference between the Z depen-
dences of �1,1 and �1,1 is due to the fact that d�1,1 /dt has a
contribution from the second term of 2KZh1��1,1−�1,1� in
Eq. �24� while d�1,1 /dt has no such contributions in Eq. �27�.
Figure 4�b� shows that �1,1 also depends on Z because of
the second term in Eq. �30�. It is noted that because tmax

defined by Eq. �42� depends on Z in general, �1,1 at t= tmax
may show a weak Z dependence, as shown in Fig. 4�b� where
tmax=107.16, 106.72, 106.46, and 105.96 for Z=10, 20, 50,
and 99, respectively.

B. SW couplings

Next we discuss the case of SW couplings by changing
the coupling randomness p. Figures 5�a�–5�c� show time
courses of S�t� for p=0.0, 0.1, and 1.0, respectively, calcu-
lated by DMA �solid curves� and direct simulations �dashed
curves�. The maximum values of the synchronization ratio
Smax in the DMA are 0.0654, 0.0694, and 0.0749, for p
=0.0, 0.1, and 1.0, respectively: Smax is slightly increased
with increasing p. This p dependence of Smax is more clearly
seen in Fig. 6�a� where Smax is plotted against p for Z=10.
Figure 6�b� shows the p dependences of �1,1, �1,1, and �1,1 at
t= tmax with K=0.02, �=0.005, N=100, and Z=10: solid and
open marks express results of DMA and direct simulations,
respectively. With increasing p, �1,1 is slightly decreased
while �1,1 is not changed. The origin of the difference be-
tween the p dependences of �1,1 and �1,1 is again due to the
fact that d�1,1 /dt has a contribution from the second term of
2KZh1��1,1−�1,1� in Eq. �24� while d�1,1 /dt has no such con-
tributions in Eq. �27�: the p dependence of �1,1 arises from
�1,1 which depends on p through network parameters of C
and R in Eq. �30�, as shown in Fig. 6�b�.

FIG. 3. �Color online� Time courses of S�t� for �a� Z=10, �b�
Z=50, and �c� Z=99 calculated by DMA �solid curves� and direct
simulations �dashed curves� ��=0.005, K=0.02, N=100, and
p=0.0�.

FIG. 4. �Color online� The average coordination-number �Z�
dependence of �a� Smax and �b� �1,1 �circles�, �1,1 �triangles�, and
�1,1 �squares� at t= tmax for �=0.005, K=0.02, N=100, and p=0.0:
solid and open marks denote results of DMA and direct simulations,
respectively.

FIG. 5. �Color online� Time courses of S�t� for �a� p=0.0, �b�
0.1, and �c� 1.0 calculated by DMA �solid curves� and direct simu-
lations �dashed curves� ��=0.005, K=0.02, and N=100�.

FIG. 6. �Color online� The coupling randomness �p� dependence
of �a� Smax and �b� �1,1 �circles�, �1,1 �triangles�, and �1,1 �squares�
at t= tmax for �=0.005, K=0.02, N=100, and Z=10: solid and open
marks denote results of DMA and direct simulations, respectively.
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In Fig. 7, Smax�p� normalized by its p=0.0 value is plotted
for various Z with N=100, K=0.02, and �=0.005. Values of
Smax�p=0.1� /Smax�p=0.0� in the DMA are 1.061, 1.048,
1.0268, and 1.000 for Z=10, 20, 30, and 50, respectively: an
increase in Smax is larger for smaller Z.

IV. CONCLUSION AND DISCUSSION

Calculations in the preceding subsection show that when
the coupling randomness p is introduced to regular networks,
the synchronization may be slightly increased for diffusive
couplings. This is in strong contrast with the result for sig-
moid couplings in �10�, which shows a decreased synchroni-
zation with increasing the coupling randomness. The main
origin of an increased synchronization for diffusive cou-
plings may be their local negative feedback, as will be dis-
cussed in the followings. The diffusive coupling given by
Eqs. �5� and �43� may be rewritten as

Ii
�c��t� = K�

j

cij�x1j − x1i� = K��
j

cijx1j − kix1i� , �44�

where ki�=� jcij� is heterogeneous. We may show that the
heterogeneity in the coordination number ki of Eq. �44� plays
an important role in an increase of Smax of SW networks. If
we replace ki by its average of Z�=	ki
� in the feedback term
of Eq. �44�, it becomes

Ii
�c��t� � K��

j

cijx1j − Zx1i� . �45�

The solid and open circles in Fig. 8 denote Smax calculated by
using Eq. �44� with DMA and simulations, respectively, for
N=100, Z=10, �=0.005, and K=0.02. The solid and open
squares in Fig. 8 express Smax calculated by using Eq. �45�
with DMA and direct simulations, respectively, for the same
parameters as mentioned above. Figure 8 clearly shows that
heterogeneous negative-feedback term �−Kkix1i� in Eq. �44�
leads to a slightly increased synchronization whereas the ho-
mogeneous one �−KZx1i� in Eq. �45� yields a decreased syn-
chronization.

Equation �44� may be alternatively rewritten as

Ii
�c��t� = K�

j

dijx1j , �46�

with

dij = cij − �ijki. �47�

It is noted that the new adjacent matrix dij given by Eq. �47�
satisfies the relation given by

�
j

dij = 0. �48�

Nishikawa et al. �17� have studied the stability of synchro-
nous states of coupled networks in which the adjacent �La-
placian� matrix is assumed to satisfy the relation as given by
Eq. �48�. This implies that the coupling adopted in �17� is
related to a diffusive process. From an analysis of the stabil-
ity of the synchronous state by the Lyapunov index, they
have shown that the synchronization becomes more difficult
in SW and SF networks with more heterogeneity. Our calcu-
lation is expected not to be in contradiction with theirs be-
cause they examine the criteria for the stability of synchro-
nous oscillations while we have discussed the degree of
synchronization for an applied signal. It has been conven-
tionally claimed that an increase in the synchronization
arises from the short average distance L in SW networks
�7,11,13–15�. However, the equations of motions presented
in Eqs. �22�–�35� �and those in �10�� do not include the term
relevant to L of SW networks.

There is also the difference between effects of heteroge-
neity for sigmoid and diffusive couplings. For sigmoid
couplings �10�, the effect of the heterogeneity of SW net-
works is included by a perturbation method with the term of
�cij�=cij�p�−cij�p=0�� through new correlations functions of
�1 and �2 �see Eq. �37� in �10��. This has been made because
the term 	�x1i�cij
 appears in the process of calculating equa-
tions of motion, for example, of d�1,1 /dt. In contrast, for the
diffusive couplings, the counterpart term becomes
	�x1i�x1j�cij
, which is in a higher order than 	�x1i�cij
. This
shows that the effect of heterogeneity for diffusive couplings
is weaker than that for sigmoid couplings: for the diffusive
couplings its effect may be included by the p-dependent C
and R in the mean-field approximation, while for sigmoid
couplings it has to be taken into account by the perturbation
method. The stronger heterogeneity for the sigmoid cou-
plings yields a decrease in the synchronization when the het-
erogeneity is introduced.

FIG. 7. The coupling randomness �p� dependence of
Smax�p� /Smax�0� for Z=10, 20, and 50 and with �=0.005, K=0.02,
and N=100.

FIG. 8. �Color online� The coupling randomness �p� dependence
of Smax for the couplings K� j�cij −�ijki�x1j �circles� and K� j�cij

−�ijZ�x1j �squares� with N=100, Z=10, �=0.005, and K=0.02,
solid and open marks denoting the results of DMA and direct simu-
lations, respectively �see text�.
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To summarize, we have discussed the synchronization in
SW networks of spiking FN neurons with diffusive cou-
plings, employing the semianalytical DMA theory previously
developed in �10�. A comparison of the results in this calcu-
lation with those for sigmoid couplings in �10� leads to the
following results.

�1� When the average coordination number Z is increased,
the synchronization S is increased both for sigmoid and dif-
fusive couplings. We should note, however, that an increase
in S is mainly made by an increase in �1,1 for sigmoid cou-
plings �Fig. 4�a� in �10�� while it is accomplished by a de-
crease in �1,1 for diffusive couplings �Fig. 4�b� in this paper�.

�2� When the coupling randomness p is increased, the
synchronization S is decreased by an introduced heterogene-
ity for sigmoid couplings, whereas for diffusive couplings, S
may be slightly increased by their negative local feedback
contribution which compensates its decrease caused by their
heterogeneity.

It is noted that an increase in the synchronization of item
�2� is due to local negative feedback in diffusive couplings,
but not due to the short average distance in SW networks,
against the conventional wisdom. Item �2� is consistent with
the results in SW networks of the phase model with the cou-
pling term of H�x−y�=sin�x−y�, for which an increase in the
synchronization with increasing p has been reported �13,14�.
Items �1� and �2� imply that the synchronization of SW net-
works depends not only on the geometry of SW networks but
also on details of couplings. In the present paper, we have
neglected the transmission time delay. Because the average
path length becomes shorter by added shortcuts �3,4�, the
response speed is expected to be improved in SW networks
with time delays. This is a great advantage of SW networks
though the synchronization may be not necessarily im-
proved. The discussions in this paper and �10� have been
confined to SW neural networks with symmetric �undirected�
and unweighted couplings. Recently it has been shown that
the synchronization in complex networks may be enhanced if
their couplings are undirected and weighted �18�. It is inter-
esting to apply our semianalytical approach to networks with
directed and weighted couplings, which are realized in real
complex networks. This subject is left as our future study.
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APPENDIX: DERIVATION OF EQS. (22)–(35)

Substituting Eq. �14� into Eqs. �3�–�6�, we get DE’s for
�x1i and �x2i of a neuron i, given by �argument t is sup-
pressed�

d�x1i

dt
= f1�x1i + f2��x1i

2 − �1,1� + f3�x1i
3 − c�x2i + �Ii

�c� + � j ,

�A1�

d�x2j

dt
= b�x1j − d�x2j , �A2�

with

�Ii
�c��t� = K�

j

cij�h1��x1j�t� − �x1j�t�� + h3��x1j�t� − �x1j�t��3� ,

�A3�

where f�= �1/�!�F��� and h�= �1/�!�H���. DE’s for the corre-
lations are given by

d�,�

dt
=� 1

N
�

i
���xi�d�x�i

dt
� + �d�xi

dt
��x�i���

c

,

�A4�

d�,�

dt
=� 1

NZ
�

i
�

j

cij���xi�d�x�j

dt
� + �d�xj

dt
��x�i���

c

,

�A5�

d�,�

dt
=� 1

N2�
i

�
j
���xi�d�x�j

dt
� + �d�xj

dt
��x�i���

c

.

�A6�

With the use of Eqs. �A4�–�A6�, we may calculate DE’s
given by Eqs. �22�–�35�. For example, terms including �Ii

�e�

in d�1,1 /dt, d�1,1 /dt, and d�1,1 /dt become

� 2

N
�

i

	�x1i�Ii
�c�
�

c

=
2Kh1

N
�

i
�

j

		cij�x1i��x1j − �x1i�

c

�A7�

=2KZh1��1,1 − �1,1� , �A8�

� 2

NZ
�

i
�

j

cij	�x1i�Ij
�c�
�

c

=
2Kh1

NZ
�

i
�

j
�

k

		cijcjk�x1i��x1k − �x1j�

c �A9�

=
2KZh1

N
��1,1 + Z�C − R��1,1 + �ZR − ZC − 1��1,1� ,

�A10�

� 2

N2�
i

�
j

	�x1i�Ij
�c�
�

c

=
2Kh1

N2 �
i

�
j

�
k

		cjk�x1i��x1k − �x1j�

c �A11�

=0. �A12�

In evaluating Eqs. �A7�–�A12�, we have employed the rela-
tion given by Eq. �13�:

		�xi�x�j

c = �,��ij + �,�cij + �,��1 − �ij − cij� .

�A13�
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